170 research outputs found

    Hydropeaking indicators for characterization of the Upper-Rhone River in Switzerland

    Get PDF
    River channelization and the construction of high-head storage schemes have been the basis of agricultural and socio-economic development in many alpine regions. One example is the Upper-Rhone River in Switzerland. The Upper-Rhone's morphology changed considerably between 1863 and 1960 as a result of two major channelizations and, from 1950 on, the construction of a large number of high-head storage hydropower schemes in the catchment. These modifications have brought large benefits to the local population, at the cost, however, of substantial disturbances in aquatic and terrestrial ecosystems in and along the river. A primary factor behind these disturbances is the alteration of the natural flow regime, namely hydropeaking due to the operation of the high-head storage hydropower plants. For sustainable river-restoration projects on regulated rivers, scientists and engineers now widely accept the necessity of integrated management of the river. Different aspects such as river morphology, sediment management, water quality, temperature, and the naturally variable flow regime should be considered simultaneously. Mitigation of non-natural, sub-daily flow fluctuations due to hydropeaking is a crucial step in restoring natural flow regimes, but is especially challenging due to the economic constraints such mitigation places upon hydropower plants. With the goal of addressing this challenge, this paper proposes three indicators to describe the flow regime of rivers in alpine catchments with and without high-head storage hydropower plants. The indicators quantify: (1) the seasonal distribution and transfer of water, (2) sub-daily flow fluctuations, and (3) the intensity and frequency of flow changes. Indicators are evaluated in a case study of the Upper-Rhone River for pre- and post-impact situations, and the benefit of a multipurpose project reducing hydropeaking on hydrologic conditions is quantified. Furthermore, the paper explores the possibility of using these indicators to link aquatic and terrestrial ecosystem well being to their hydrolog

    Risk management and communication in informal dairy sector in Côte d’Ivoire: Options for sustainable livelihoods

    Get PDF
    Intervention in food and nutrition was the best investment for our collective future in terms of managing co-morbidity in population. This investment should combine agricultural system with health and education. Fermented dairy products (FDP) played an important role for prolonged shelf life, microbial safety and nutrition. FDP was proved to be contaminated in Kenya, Somalia, Mali and Côte d'Ivoire by foodborne pathogens including Staphylococcus aureus and Escherichia coli. Recently, it was showed that FDP was predominated by a novel Streptococcus infantarius subsp. infantarius (Sii) variant. Sii-produced bacteriocin and fermentation activity could contribute to the suppression of pathogens and possibly mitigate socioeconomic and health risks. However, Sii as member of Streptococcus bovis group was associated with human and animal infections. Therefore, a potential application of Sii as adapted African starter culture for enhanced food safety required a thorough safety assessment. In order to improve hygiene and quality as well as to increase production for school canteens, urban consumption and sustainable livelihoods, a cross-sectional study was conducted in Korhogo (Côte d’Ivoire) from May to August 2014. The objective was to assess local technologies and the dairy value chain in relation to Sii prevalence, followed by a participatory stakeholder workshop to validate findings and derive adapted interventions. The study showed that the dairy value chain contributed to livelihoods and household income. About 90% of milk produced (range: 12-44 liters/collector) were sold via collectors, generating 6-20 Euros per day shared among herder, collector and vendor. The remaining 10% were consumed within the household. However, dairy production was low and scattered due to informal practices resulting in poor quality product. Basic hygiene such as cleaning, washing, disinfecting was lacking. Milk quality depreciated with the local practices, access to clean water and energy. Future interventions identified by stakeholders comprised (i) awareness on local dairy hygiene and nutritional value for the population especially school children, (ii) stakeholders organization around cooperative to develop sustainable dairy model (public dairy with private management); (iii) promote healthy milk products for school canteen programme in Korhogo through adapted local dairy technology

    Traditional milk transformation schemes in Côte d'Ivoire and their impact on the prevalence of Streptococcus bovis complex bacteria in dairy products

    Get PDF
    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) and possibly Streptococcus infantarius subsp. infantarius (Sii) are associated with human and animal diseases. Sii predominate in spontaneously fermented milk products with unknown public health effects. Sii/SBSEC prevalence data from West Africa in correlation with milk transformation practices are limited. Northern Côte d'Ivoire served as study area due to its importance in milk production and consumption and to link a wider Sudano-Sahelian pastoral zone of cross-border trade. We aimed to describe the cow milk value chain and determine Sii/SBSEC prevalence with a cross-sectional study. Dairy production practices were described as non-compliant with basic hygiene standards. The system is influenced by secular sociocultural practices and environmental conditions affecting product properties. Phenotypic and molecular analyses identified SBSEC in 27/43 (62.8%) fermented and 26/67 (38.8%) unfermented milk samples. Stratified by collection stage, fermented milk at producer and vendor levels featured highest SBSEC prevalence of 71.4% and 63.6%, respectively. Sii with 62.8% and 38.8% as well as Streptococcus gallolyticus subsp. macedonicus with 7.0% and 7.5% were the predominant SBSEC species identified among fermented and unfermented milk samples, respectively. The population structure of Sii/SBSEC isolates seems to reflect evolving novel dairy-adapted, non-adapted and potentially pathogenic lineages. Northern Côte d'Ivoire was confirmed as area with high Sii presence in dairy products. The observed production practices and the high diversity of Sii/SBSEC supports in-depth investigations on Sii ecology niche, product safety and related technology in the dairy value chain potentially affecting large population groups across sub-Saharan Africa

    Risk factors for the carriage of Streptococcus infantarius subspecies infantarius isolated from African fermented dairy products

    Get PDF
    Streptococcus infantarius subsp. infantarius (Sii) has been identified as predominant lactic acid bacteria in spontaneously fermented dairy products (FDPs) in sub-Saharan Africa including Côte d'Ivoire. However, Sii belongs to the Streptococcus bovis/Streptococcus equinus complex (SBSEC). Most SBSEC members are assumed to be involved as opportunistic pathogens in serious diseases in both humans and animals. A population-based cross-sectional survey, including 385 participants was conducted in Korhogo, northern Côte d'Ivoire, to identify risk factors for Sii fecal carriage, including consumption of local FDPs. A structured questionnaire was used to gather participant's socio-demographic and economic characteristics, their relation to livestock and dietary habits. In addition, fresh stool and milk samples were collected. The identification of Sii was done using a SBSEC-specific PCR assay targeting 16S rRNA and groEL genes. The overall prevalence of SBSEC and Sii carriage was 23.2% (confidence interval CI 95% = 18.9-27.5) and 12.0% (CI 95% = 8.4-15.5) for stool, respectively. Prevalence of Sii was significantly higher in consumers of artisanal butter compared with non-consumers (57.1% vs 10.1%, odds ratio OR: 11.9, 95% CI: 3.9-36.6), as well as in persons handling livestock (OR = 3.9; 95% CI = 1.6-9.3) and livestock primary products (OR = 5.7; 95% CI = 2.3-14.3). The closer contact with livestock was a risk factor for Sii fecal carriage. Sii strains were isolated from fresh and fermented milk products with a prevalence of 30.4% and 45.4%, respectively. Analysis of Sii population structure through the SBSEC multi locus sequence typing assay revealed a close relationship across human and dairy isolates, possibly linked to a Kenyan human isolate. All these outcomes underline the interest of in-depth investigations on the ecology, potential reservoirs and pathways of contamination by Sii at the human-animal-environment interface in comparison to yet to be collected data from Europe, Asia and the Americas to further elucidate the various roles of Sii

    The rise and fall of methanotrophy following a deepwater oil-well blowout

    Get PDF
    The blowout of the Macondo oil well in the Gulf of Mexico in April 2010 injected up to 500,000 tonnes of natural gas, mainly methane, into the deep sea1. Most of the methane released was thought to have been consumed by marine microbes between July and August 20102, 3. Here, we report spatially extensive measurements of methane concentrations and oxidation rates in the nine months following the spill. We show that although gas-rich deepwater plumes were a short-lived feature, water column concentrations of methane remained above background levels throughout the rest of the year. Rates of microbial methane oxidation peaked in the deepwater plumes in May and early June, coincident with a rapid rise in the abundance of known and new methane-oxidizing microbes. At this time, rates of methane oxidation reached up to 5,900 nmol l−1 d−1—the highest rates documented in the global pelagic ocean before the blowout4. Rates of methane oxidation fell to less than 50 nmol l−1 d−1 in late June, and continued to decline throughout the remainder of the year. We suggest the precipitous drop in methane consumption in late June, despite the persistence of methane in the water column, underscores the important role that physiological and environmental factors play in constraining the activity of methane-oxidizing bacteria in the Gulf of Mexico

    A Defined Terminal Region of the E. coli Chromosome Shows Late Segregation and High FtsK Activity

    Get PDF
    Background: The FtsK DNA-translocase controls the last steps of chromosome segregation in E. coli. It translocates sister chromosomes using the KOPS DNA motifs to orient its activity, and controls the resolution of dimeric forms of sister chromosomes by XerCD-mediated recombination at the dif site and their decatenation by TopoIV. Methodology: We have used XerCD/dif recombination as a genetic trap to probe the interaction of FtsK with loci located in different regions of the chromosome. This assay revealed that the activity of FtsK is restricted to a,400 kb terminal region of the chromosome around the natural position of the dif site. Preferential interaction with this region required the tethering of FtsK to the division septum via its N-terminal domain as well as its translocation activity. However, the KOPSrecognition activity of FtsK was not required. Displacement of replication termination outside the FtsK high activity region had no effect on FtsK activity and deletion of a part of this region was not compensated by its extension to neighbouring regions. By observing the fate of fluorescent-tagged loci of the ter region, we found that segregation of the FtsK high activity region is delayed compared to that of its adjacent regions. Significance: Our results show that a restricted terminal region of the chromosome is specifically dedicated to the last step
    corecore